有限元
在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。
它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
了解更多请点击!
发展
概述:
随着计算机技术的迅速发展,在工程领域中,有限元分析(FEA)越来越多地用于仿真模拟,来求解真实的工程问题。这些年来,越来越多的工程师、应用数学家和物理学家已经证明这种采用求解偏微分方程(PDE)的方法可以求解许多物理现象,这些偏微分方程可以用来描述流动、电磁场以及结构力学等等。有限元方法用来将这些众所周知的数学方程转化为近似的数字式图象。
早期的有限元主要关注于某个专业领域,比如应力或疲劳,但是,一般来说,物理现象都不是单独存在的。例如,只要运动就会产生热,而热反过来又影响一些材料属性,如电导率、化学反应速率、流体的粘性等等。这种物理系统的耦合就是我们所说的多物理场,分析起来比我们单独去分析一个物理场要复杂得多。很明显,我们需要一个多物理场分析工具。
在上个世纪90年代以前,由于计算机资源的缺乏,多物理场模拟仅仅停留在理论阶段,有限元建模也局限于对单个物理场的模拟,最常见的也就是对力学、传热、流体以及电磁场的模拟。看起来有限元仿真的命运好像也就是对单个物理场的模拟。
这种情况已经开始改变。经过数十年的努力,计算科学的发展为我们提供了更灵巧简洁而又快速的算法,更强劲的硬件配置,使得对多物理场的有限元模拟成为可能。新兴的有限元方法为多物理场分析提供了一个新的机遇,满足了工程师对真实物理系统的求解需要。有限元的未来在于多物理场求解。
千言万语道不尽,下面只能通过几个例子来展示多物理场的有限元分析在未来的一些潜在应用。
压电扩音器(Piezoacoustic transducer)可以将电流转换为声学压力场,或者反过来,将声场转换为电流场。这种装置一般用在空气或者液体中的声源装置上,比如相控阵麦克风,超声生物成像仪,声纳传感器,声学生物治疗仪等,也可用在一些机械装置比如喷墨机和压电马达等。
压电扩音器涉及到三个不同的物理场:结构场,电场以及流体中的声场。只有具有多物理场分析能力的软件才能求解这个模型。
压电材料选用PZT5-H晶体,这种材料在压电传感器中用得比较广泛。在空气和晶体的交界面处,将声场边界条件设置为压力等于结构场的法向加速度,这样可以将压力传到空气中去。另外,晶体域中又会因为空气压力对其的影响而产生变形。仿真研究了在施加一个幅值200V,震荡频率为300 KHz的电流后,晶体产生的声波传播。这个模型的描述及其完美的结果表明在任何复杂的模型下,我们都可以用一系列的数学模型进行表达,进而求解。
多物理场建模的另外一个优势就是在学校里,学生们直观地获取了以前无法见到的一些现象,而简单易懂的表达方式也获得了学生们的好感。这只是Krishan Kumar Bhatia博士在纽约Glassboro的Rowan 大学给高年级的毕业生讲授传热方程课程时介绍建模及分析工具所感受到的,他的学生的课题是如何冷却一个摩托车的发动机箱。Bhatia博士教他们如何利用“设计-制造-检测”的理念来判断问题、找出问题、解决问题。如果没有计算机仿真的应用,这种方法在课堂上推广是不可想象的,因为所需费用实在是太大了。
COMSOL Multiphysics拥有优秀的用户界面,可以使学生方便地设置传热问题,并很快得到所需要的结果。“我的目标是使每个学生都能了解偏微分方程,当下次再遇到这样的问题时,他们不会再担心,” Bhatia博士说,“这不需要了解太多的分析工具,总的来说,学生都反映‘这个建模工具太棒了’”。
很多优秀的高科技工程公司已经看到多物理场建模可以帮助他们保持竞争力。多物理场建模工具可以让工程师进行更多的虚拟分析而不是每次都需要进行实物测试。这样,他们就可以快速而经济地优化产品。在印度尼西亚的Medrad Innovations Group中,由John Kalafut博士带领着一个研究小组,采用多物理场分析工具来研究细长的注射器中血细胞的注射过程,这是一种非牛顿流体,而且具有很高的剪切速率。
通过这项研究,Medrad的工程师制造了一个新颖的装置称为先锋型血管造影导管(Vanguard Dx Angiographic Catheter)。同采用尖喷嘴的传统导管相比,采用扩散型喷嘴的新导管使得造影剂分布得更加均匀。造影剂就是在进行X光拍照时,将病变的器官显示得更加清楚的特殊材料。
另外一个问题就是传统导管在使用过程中可能会使得造影剂产生很大的速度,进而可能会损伤血管。先锋型血管造影导管降低了造影剂对血管产生的冲击力,将血管损伤的可能性降至最低。
关键的问题就是如何去设计导管的喷嘴形状,使其既能优化流体速度又能减少结构变形。Kalafut的研究小组利用多物理场建模方法将层流产生的力耦合到应力应变分 析中去,进而对各种不同喷嘴的形状、布局进行流固耦合分析。“我们的一个实习生针对不同的流体区域建立不同的喷嘴布局,并进行了分析,” Kalafut博士说,“我们利用这些分析结果来评估这些新想法的可行性,进而降低实体模型制造次数”。
摩擦搅拌焊接(FSW),自从1991年被申请专利以来,已经广泛应用于铝合金的焊接。航空工业最先开始采用这些技术,正在研究如何利用它来降低制造成本。在摩擦搅拌焊接的过程中,一个圆柱状具有轴肩和搅拌头的刀具旋转插入两片金属的连接处。旋转的轴肩和搅拌头用来生热,但是这个热还不足以融化金属。反之,软化呈塑性的金属会形成一道坚实的屏障,会阻止氧气氧化金属和气泡的形成。粉碎,搅拌和挤压的动作可以使焊缝处的结构比原先的金属结构还要好,强度甚至可以到原来的两倍。这种焊接装置甚至可以用于不同类型的铝合金焊接。
空中客车(AirBus)资助了很多关于摩擦搅拌焊接的研究。在制造商大规模投资和重组生产线之前,Cranfield大学的Paul Colegrove博士利用多物理场分析工具帮助他们理解了加工过程。
第一个研究成果是一个摩擦搅拌焊接的数学模型,这让空客的工程师“透视”到焊缝中来检查温度分布和微结构的变化。Colegrove博士和他的研究小组还编写了一个带有图形界面的仿真工具,这样空客的工程师可以直接提取材料的热力属性以及焊缝极限强度。
在这个摩擦搅拌焊接的模拟过程中,将三维的传热分析和二维轴对称的涡流模拟耦合起来。传热分析计算在刀具表面施加热流密度后,结构的热分布。可以提取出刀具的位移,热边界条件,以及焊接处材料的热学属性。接下来将刀具表面处的三维热分布映射到二维模型上。耦合起来的模型就可以计算在加工过程中热和流体之间的相互作用。
将基片的电磁、电阻以及传热行为耦合起来需要一个真正的多物理场分析工具。一个典型的应用是在半导体的加工和退火的工艺中,有一种利用感应加热的热壁熔炉,它用来让半导体晶圆生长,这是电子行业中的一项关键技术。
例如,金刚砂在2,000°C的高温环境下可以取代石墨接收器,接收器由功率接近10KW的射频装置加热。在如此高温下要保持炉内温度的均匀,炉腔的设计至关重要。经过多物理场分析工具的分析,发现热量主要是通过辐射的方式进行传播的。在模型内不仅可以看到晶圆表面温度的分布,还可以看到熔炉的石英管上的温度分布。
在电路设计中,影响材料选择的重要方面是材料的耐久性和使用寿命。电器小型化的趋势使得可在电路板上安装的电子元件发展迅猛。众所周知,安装在电路板上的电阻以及其他一些元件会产生大量的热,进而可能使得元件的焊脚处产生裂缝,最后导致整个电路板报废。
多物理场分析工具可以分析出整个电路板上热量的转移,结构的应力变化以及由于温度的上升导致的变形。这样做可以用来提升电路板设计的合理性以及材料选择的合理性。
计算机能力的提升使得有限元分析由单场分析到多场分析变成现实,未来的几年内,多物理场分析工具将会给学术界和工程界带来震惊。单调的“设计-校验”的设计方法将会慢慢被淘汰,虚拟造型技术将让你的思想走得更远,通过模拟仿真将会点燃创新的火花。
自2000年以来,国内外对非线性结构问题的数值解法做了大量的研究。修正的牛顿-拉普森迭代法的出现,为保证计算精度提供了保障。但是,对求解结构极限强度而言,这种方法仍很难找到极限点。Wright&Gaylord发展了假想弹簧法以保证后极限强度区域结构刚度矩阵的正定,并成功应用于框架结构的分析。Bergan等提出了当前刚度参数法,来抑制临界区域的平衡迭代进而穿越极限点。Batoz提出了位移控制法,通过施加已知位移变化过程反求结构内力,从而穿越极限点求出结构的后极限强度响应。Riks首次提出弧长控制法,1981年由Crisfield、Ramm、Powell和Simons等人做了改进,并与修正的牛顿-拉普森法相结合,成功地实现了求解后极限平衡路径中的“阶跃”(Snap-through)问题。高素荷等人对网格划分密度与有限元求解精度的关系进行了研究。通过对不同网格密度、不同单元类型的有限元力学模型计算结果与精确解的分析比较,探索研究单元网格划分与有限元求解精度的内在联系,为在保证有限元解满足工程实际精度要求的前提下,确定合理的网格密度,提高有限元分析效率进行了有益的探索。研究证明:对于几何尖角处、应力应变变化较大区域,有限元分析时应选择高阶次单元,并适当增加单元网格密度。这样,既可保证单元的形状,同时,又可提高求解精度、准确性及加快收敛速度。全自动划分网格时,优先考虑选用高阶单元。在网格划分和初步求解时,应做到先简后繁,先粗后精。由于工程结构一般具有重复对称或轴对称、镜象对称等特点,为提高求解效率,应充分利用重复与对称等特征,采用子结构或对称模型以提高求解效率和精度。
来源:网络